Hassan Ijaz

Ai, Web & Design
← Back to all topics
Statistical InferenceTopic 15 of 58

Parameter estimation (MLE, MAP)

Interactive likelihood function visualizer where users guess parameters and see likelihood surface with gradient ascent animation to find MLE

Concept Overview

Parameter estimation involves using sample data to estimate unknown population parameters. Two main approaches are Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP) estimation.

Maximum Likelihood Estimation (MLE)

Find parameter values that maximize the probability of observing the data

L(θ) = ∏ P(x_i | θ)

Likelihood function

θ̂_MLE = argmax L(θ)

MLE estimate

  • Asymptotically unbiased and efficient
  • Invariant under transformations
  • Often solved using calculus (set derivative to 0)
  • May not exist or be unique in some cases

Maximum A Posteriori (MAP) Estimation

Incorporates prior knowledge about parameter values

P(θ|x) ∝ P(x|θ) × P(θ)

Posterior ∝ Likelihood × Prior

θ̂_MAP = argmax P(θ|x)

MAP estimate

  • Reduces to MLE when prior is uniform
  • Can incorporate domain expertise
  • Provides regularization against overfitting
  • Sensitive to prior specification

Common Examples

Normal Distribution

MLE for μ: sample mean, MLE for σ²: sample variance (with n denominator)

Bernoulli Distribution

MLE for p: proportion of successes in sample

Exponential Distribution

MLE for λ: 1/sample mean

Properties of Estimators

Unbiased

E[θ̂] = θ (expectation equals true value)

Consistent

θ̂ → θ as n → ∞ (converges to truth)

Efficient

Achieves Cramér-Rao lower bound

Sufficient

Uses all information in the data

Practical Tip: MLE often requires numerical optimization for complex models. Modern statistical software uses algorithms like Newton-Raphson or EM algorithm to find MLEs.

The interactive likelihood visualizer below lets you guess parameters and see the likelihood surface. Watch the gradient ascent animation find the MLE automatically.

Interactive Visualization

Loading interactive visualization...

Interactive likelihood function visualizer where users guess parameters and see likelihood surface with gradient ascent animation to find MLE